Nobel z fizyki za fale, które wstrząsnęły Wszechświatem
Tegoroczną Nagrodę Nobla przyznano Rainerowi Weissowi, Barry C. Barishowi i Kipowi S. Thorne, dzięki którym powstał detektor LIGO i po raz pierwszy zaobserwowano fale grawitacyjne – echo zderzenia odległych czarnych dziur.
Połowę nagrody pieniężnej (9 milionów koron szwedzkich, czyli 4 miliony złotych) otrzyma Rainer Weiss, drugą połową podzielą się Barry C. Barish i Kip S. Thorne.
Istnienie fal grawitacyjnych przewidział już Albert Einstein w ogólnej teorii względności opublikowanej 20 marca 1916 roku. Jednak po raz pierwszy udało się je zaobserwować dopiero 14 września 2015. Wówczas dotarły do Ziemi fale grawitacyjne wywołane przez zderzenie dwóch czarnych dziur (jedna o masie 29, a druga 36 mas Słońca), oddalonych od nas o 1,3 miliarda lat świetlnych. Tuż przed zderzeniem zbliżały się one do siebie z prędkością równą połowie prędkości światłą (150 000 kilometrów na sekundę). Powstała czarna dziura 62 razy cięższa niż Słońce - brakujące 3 masy Słońca to energia wypromieniowanych fal grawitacyjnych. Jako że fale grawitacyjne rozchodzą się z prędkością światła, to kiedy zdarzył się ten kosmiczny kataklizm, na naszej planecie żyły tylko prymitywne organizmy jednokomórkowe.
Choć fale grawitacyjne odebrane z tak wielkiej odległości są bardzo słabe, potwierdzenie ich istnienia może oznaczać przewrót w astrofizyce. Pozwalają bowiem w zupełnie nowy sposób obserwować najbardziej gwałtownie zjawiska kosmiczne i poszerzać granice naszej wiedzy. Badania nad nimi umożliwił interferometr LIGO (Laser Interferometer Gravitational Wave Observatory) – wspólny projekt 1300 badaczy z ponad 20 krajów (w tym z Polski). Idea zbudowania takiego urządzenia ma niemal 50 lat, a do jej urzeczywistnienia szczególnie przyczynili się tegoroczni laureaci. (Natomiast Weiss, w czasie wtorkowej rozmowy telefonicznej podczas uroczystości ogłoszenia nazwisk laureatów w Sztokholmie podkreślił, że nagrodę postrzega "jako uznanie dla pracy tysiąca ludzi").
W połowie lat 70. XX wieku Rainer Weiss przeanalizował potencjalne źródła zakłóceń, mogących zaburzać prowadzenie pomiarów fal grawitacyjnych. Zaprojektował również odpowiedni detektor – laserowy interferometr. Już wówczas Kip Thorne i Rainer Weiss byli przekonani, że fale grawitacyjne uda się wykryć.
Fale te powstają zawsze, gdy jakaś masa przyspiesza – zarówno w przypadku wykonującego piruet łyżwiarza, jak i pary okrążających się nawzajem czarnych dziur. Gdy taka fala przenika przez Ziemię, wszystko na niej minimalnie zmienia swoje wymiary. Jednak nawet fale wytwarzane przez czarne dziury są tak słabe, że Einstein uważał ich wykrycie za niemożliwe. W rzeczywistości okazało się to "tylko" bardzo trudne – potrzeba było pary ogromnych interferometrów laserowych, oddalonych od siebie o 3 tysiące km, aby wykryć zmianę długości interferometrów, tysiące razy mniejszą od rozmiarów jądra atomowego. Każdy z detektorów (jeden w stanie Waszyngton, drugi – w Luizjanie) ma dwa tunele w kształcie litery L. Długość takiego tunelu to 4 kilometry. W ich wnętrzu odbijają się wiązki laserowa, a odpowiednia aparatura sprawdza, czy długość jednego ramienia nie zmieniła się w stosunku do drugiego. Zwykle wyniki pomiaru są takie same – chyba, że fala grawitacyjna odkształci czasoprzestrzeń.
Wszystkie znane rodzaje promieniowania elektromagnetycznego i cząstek elementarnych – w tym promieniowanie kosmiczne – znalazły już zastosowanie w badaniach Wszechświata. Jednak właściwości fal grawitacyjnych pozwalają na bezpośrednią obserwację zaburzeń czasoprzestrzeni, otwierając zupełnie nowe perspektywy w astrofizyce.
Możemy się spodziewać wielu nowych odkryć dokonanych dzięki nieuchwytnym dotychczas falom. Pierwszym było samo odkrycie podwójnego układu czarnych dziur, których trwające 0,12 sekundy zderzenie zarejestrowano 14 września 2015. Czarne dziury nie generują światła ani fal radiowych – za to mogą wytwarzać fale grawitacyjne. Możliwe, że uda się wykrywać także zderzenia gwiazd, rotujące gwiazdy neutronowe czy wybuchy supernowych. (PAP)
Zobacz także
Nowatorska metoda uratowała pacjentów przed okaleczeniem
2016-12-01, 11:34Nowatorska metoda leczenia agresywnych guzów okolic szczękowych, zastosowana w Szpitalu Klinicznym im. A. Mielęckiego w Katowicach, pozwoliła dwojgu pacjentów uniknąć okaleczającej terapii, wiążącej się z usunięciem znacznych… Czytaj dalej »
Kamery na bloku operacyjnym, czyli chirurgia on-line z poznańskiej kliniki
2016-11-30, 16:35Kamery makro pokazujące obraz z bloku operacyjnego i miko - zmontowane m.in. w endoskopach transmitowały w środę dwie operacje z Kliniki Otolaryngologii i Onkologii Laryngologicznej Uniwersytetu Medycznego im. K. Marcinkowskiego w Poz… Czytaj dalej »
PWPW: za trzy lata może powstać polski mikroprocesor; koszt to 150 mln zł
2016-11-29, 17:56Za trzy lata może powstać polski Programowalny Układ Scalony, a szacunkowy koszt jego opracowania i wyprodukowania to 150 mln zł - poinformował prezes Polskiej Wytwórni Papierów Wartościowych Piotr Woyciechowski. Mikroprocesor może… Czytaj dalej »
Chorym z lekooporną depresją wszczepiono stymulatory nerwu błędnego
2016-11-28, 10:37Stymulatory nerwu błędnego wszczepili dwojgu pierwszym pacjentom lekarze w Szpitalu Klinicznym nr 7 Śląskiego Uniwersytetu Medycznego - Górnośląskim Centrum Medycznym (GCM) w Katowicach. U obojga zaobserwowano poprawę. Planowane są… Czytaj dalej »
Projekt badaczki z AGH może pomóc w walce z niedoborem wody
2016-11-28, 10:33Pozyskiwanie większych ilości wody z mgły jest celem badań prowadzonych przez dr inż. Urszulę Stachewicz z AGH w Krakowie. Pozytywne wyniki pracy uczonej mogłyby się przyczynić do efektywniejszej walki z niedoborami wody w świec… Czytaj dalej »