Laboratorium z Łodzi testuje technologię zwijanych ekranów telewizorów i smartfonów
Elastyczne ekrany telewizorów i smartfonów, które można zwinąć jak płócienny obraz to technologie, nad którymi pracują światowi producenci tych urządzeń. Łódzkie laboratorium testuje materiały organiczne, które są w wykorzystywane w takich wyświetlaczach.
"To przejście od tradycyjnej technologii LED do technologii OLED" - mówi PAP dr Małgorzata Maciejczyk.
Jednym z najnowszych laboratoriów łódzkiego Technoparku jest Laboratorium Biosensorów i Elektroniki Organicznej, które testuje materiały organiczne wykorzystywane w wyświetlaczach m.in. telewizorów, laptopów czy smartfonów.
Prowadzi też badania w zakresie optymalizacji warunków wytwarzania urządzeń z substancji organicznych oraz ich kompozytów. Można tu zaprojektować i scharakteryzować właściwości organicznych diod elektroluminescencyjnych (OLED) stosowanych w wyświetlaczach graficznych, ogniw fotowoltaicznych oraz tranzystorów z efektem polowym.
Jak powiedziała PAP dr Małgorzata Maciejczyk, obecnie laboratorium koncentruje się m.in. na szeroko pojętej elektronice drukowanej. "To jest przejście od tradycyjnej technologii LED do technologii OLED, czyli organicznych diod emitujących światło, które są wykorzystywane w elastycznych ekranach, które można zwijać czy smartfonach, które się wyginają i nie pękają” - wyjaśniła.
Na wyposażeniu LBiEO znajduje się system tzw. komór rękawicowych z najnowocześniejszymi rozwiązaniami i aparaturą badawczą. Umożliwia on testowanie materiałów typowych dla elektroniki organicznej w warunkach gazu obojętnego, czyli pozbawionych tlenu i wilgoci. Zapewnia to najwyższą jakość wytwarzanych produktów.
Dzięki temu specjaliści mogą zweryfikować, czy dany pomysł na zastosowanie dostarczonego przez klienta materiału jest odpowiedni dla technologii EO (elektroniki organicznej) i czy rzeczywiście można wprowadzić go na rynek.
Laboratorium dysponuje także specjalistyczną drukarką strumieniową, dzięki której można wydrukować urządzenia optoelektroniczne (tranzystory) lub ich elementy.
"Drukujemy całe urządzenia albo elementy, które są wykorzystywane w optoelektronice, czyli warstwy aktywne z materiałów świecących oraz ścieżki przewodzące z materiałów zawierających np. nanosrebro. Po wyjściu z drukarki można otrzymać bazę do urządzenia bądź całe, działające już urządzenie tj. diody elektroluminescencyjne czy tranzystory” - wyjaśniła menadżer laboratorium dr inż. Sylwia Kotarba.
Laboratorium posiada także unikatowy, zaprojektowany specjalnie na potrzeby LBiEO w pełni zautomatyzowany system pomiarowy, w tym nanorobota. Umożliwia on badanie właściwości elektrycznych OFET (organicznych tranzystorów polowych), które są urządzeniami lekkimi, a technologia ich wytwarzania jest prosta i energooszczędna.
W przyszłości łódzkie laboratorium, na bazie tych urządzeń, chce projektować i wytwarzać łatwy do miniaturyzacji typ sensorów, które mogą znaleźć zastosowanie w medycynie spersonalizowanej.
"Ten układ urządzeń daje możliwość wytwarzania nie tylko tranzystorów czy OLED-ów ale także sensorów na ich bazie. Może to być wykorzystywane w medycynie spersonalizowanej np. w badaniu poziomu glukozy we krwi, które mogłoby być sprzęgnięte z urządzeniem mobilnym tak, żeby opiekun chorego miał na odległość wgląd w stan jego zdrowia” - wyjaśniła dr Kotarba.
Laboratorium Biosensorów i Elektroniki Organicznej to część BioNanoParku - jednego z najnowocześniejszych centrów badawczo-wdrożeniowych dla biznesu, wchodzącego w skład Łódzkiego Regionalnego Parku Naukowo-Technologicznego. Największymi udziałowcami Technoparku są miasto Łódź oraz województwo łódzkie, a współudziałowcami m.in. Politechnika Łódzka.
Laboratoria i pracownie bio- i nanotechnologiczne prowadzą tu od trzech lat badania m.in. dla przemysłu chemicznego, kosmetycznego, farmaceutycznego, spożywczego czy paliwowego.
Od początku tego roku w Technoparku funkcjonuje sześć nowych laboratoriów naszpikowanych nowoczesnym sprzętem, na czele z unikatowym, zaprojektowanym i zbudowanym przez polskich specjalistów ARUZ-em, czyli "cyfrową probówką" posiadającą moc obliczeniową większą od superkomputerów. Działają w nim także Laboratoria: Biotechnologiczne, Medycyny Spersonalizowanej, Autentykacji Produktów oraz Symulacji Molekularnych. (PAP)
Zobacz także
Firmy z Doliny Krzemowej zagrożeniem dla wolności internetu
2017-11-29, 20:23Firmy z Doliny Krzemowej są zagrożeniem dla wolności i niezależności internetu - powiedział we wtorek wieczorem szef amerykańskiej Federalnej Komisji ds. Łączności (FCC) Ajit Pai, broniąc propozycji wycofania regulacji gwarantujących… Czytaj dalej »
Z kosmodromu Wostocznyj wystartowała rakieta Sojuz 2.1b
2017-11-28, 09:27Rakieta Sojuz 2.1b wystartowała we wtorek z kosmodromu Wostocznyj - poinformowała rosyjska agencja kosmiczna Roskosmos. Rakieta wyniesie na orbitę okołoziemską m.in. 14 amerykańskich, szwedzkich, kanadyjskich, niemieckich i japońskich… Czytaj dalej »
Samouczące się systemy informatyczne pomocą dla radiologów
2017-11-28, 09:23Samouczące się systemy informatyczne, które na podstawie zgromadzonych danych i doświadczeń potrafią automatycznie analizować również nowe dane, mogą się okazać pomocne w pracy radiologów. Tego typu rozwiązanie powstaje właśnie… Czytaj dalej »
Czy sztuczna inteligencja będzie zagrożeniem dla ludzi?
2017-11-27, 16:51Możliwe, że w przyszłości większość prac będę wykonywały za nas roboty. Już dzisiaj pracują zamiast ludzi w niektórych branżach. Tym samym może zniknąć przymus ekonomiczny i będziemy musieli nauczyć się żyć inaczej -… Czytaj dalej »
Polski tani test wykrywający 70 genów odpowiedzialnych za nowotwory
2017-11-27, 16:44Polscy specjaliści jako pierwsi na świcie opracowali oparte na sekwencjonowaniu genomowym tanie testy wykrywające większą podatność na nowotwory złośliwe - poinformowano w poniedziałek na konferencji prasowej w Warszawie. Czytaj dalej »