Laboratorium z Łodzi testuje technologię zwijanych ekranów telewizorów i smartfonów
Elastyczne ekrany telewizorów i smartfonów, które można zwinąć jak płócienny obraz to technologie, nad którymi pracują światowi producenci tych urządzeń. Łódzkie laboratorium testuje materiały organiczne, które są w wykorzystywane w takich wyświetlaczach.
"To przejście od tradycyjnej technologii LED do technologii OLED" - mówi PAP dr Małgorzata Maciejczyk.
Jednym z najnowszych laboratoriów łódzkiego Technoparku jest Laboratorium Biosensorów i Elektroniki Organicznej, które testuje materiały organiczne wykorzystywane w wyświetlaczach m.in. telewizorów, laptopów czy smartfonów.
Prowadzi też badania w zakresie optymalizacji warunków wytwarzania urządzeń z substancji organicznych oraz ich kompozytów. Można tu zaprojektować i scharakteryzować właściwości organicznych diod elektroluminescencyjnych (OLED) stosowanych w wyświetlaczach graficznych, ogniw fotowoltaicznych oraz tranzystorów z efektem polowym.
Jak powiedziała PAP dr Małgorzata Maciejczyk, obecnie laboratorium koncentruje się m.in. na szeroko pojętej elektronice drukowanej. "To jest przejście od tradycyjnej technologii LED do technologii OLED, czyli organicznych diod emitujących światło, które są wykorzystywane w elastycznych ekranach, które można zwijać czy smartfonach, które się wyginają i nie pękają” - wyjaśniła.
Na wyposażeniu LBiEO znajduje się system tzw. komór rękawicowych z najnowocześniejszymi rozwiązaniami i aparaturą badawczą. Umożliwia on testowanie materiałów typowych dla elektroniki organicznej w warunkach gazu obojętnego, czyli pozbawionych tlenu i wilgoci. Zapewnia to najwyższą jakość wytwarzanych produktów.
Dzięki temu specjaliści mogą zweryfikować, czy dany pomysł na zastosowanie dostarczonego przez klienta materiału jest odpowiedni dla technologii EO (elektroniki organicznej) i czy rzeczywiście można wprowadzić go na rynek.
Laboratorium dysponuje także specjalistyczną drukarką strumieniową, dzięki której można wydrukować urządzenia optoelektroniczne (tranzystory) lub ich elementy.
"Drukujemy całe urządzenia albo elementy, które są wykorzystywane w optoelektronice, czyli warstwy aktywne z materiałów świecących oraz ścieżki przewodzące z materiałów zawierających np. nanosrebro. Po wyjściu z drukarki można otrzymać bazę do urządzenia bądź całe, działające już urządzenie tj. diody elektroluminescencyjne czy tranzystory” - wyjaśniła menadżer laboratorium dr inż. Sylwia Kotarba.
Laboratorium posiada także unikatowy, zaprojektowany specjalnie na potrzeby LBiEO w pełni zautomatyzowany system pomiarowy, w tym nanorobota. Umożliwia on badanie właściwości elektrycznych OFET (organicznych tranzystorów polowych), które są urządzeniami lekkimi, a technologia ich wytwarzania jest prosta i energooszczędna.
W przyszłości łódzkie laboratorium, na bazie tych urządzeń, chce projektować i wytwarzać łatwy do miniaturyzacji typ sensorów, które mogą znaleźć zastosowanie w medycynie spersonalizowanej.
"Ten układ urządzeń daje możliwość wytwarzania nie tylko tranzystorów czy OLED-ów ale także sensorów na ich bazie. Może to być wykorzystywane w medycynie spersonalizowanej np. w badaniu poziomu glukozy we krwi, które mogłoby być sprzęgnięte z urządzeniem mobilnym tak, żeby opiekun chorego miał na odległość wgląd w stan jego zdrowia” - wyjaśniła dr Kotarba.
Laboratorium Biosensorów i Elektroniki Organicznej to część BioNanoParku - jednego z najnowocześniejszych centrów badawczo-wdrożeniowych dla biznesu, wchodzącego w skład Łódzkiego Regionalnego Parku Naukowo-Technologicznego. Największymi udziałowcami Technoparku są miasto Łódź oraz województwo łódzkie, a współudziałowcami m.in. Politechnika Łódzka.
Laboratoria i pracownie bio- i nanotechnologiczne prowadzą tu od trzech lat badania m.in. dla przemysłu chemicznego, kosmetycznego, farmaceutycznego, spożywczego czy paliwowego.
Od początku tego roku w Technoparku funkcjonuje sześć nowych laboratoriów naszpikowanych nowoczesnym sprzętem, na czele z unikatowym, zaprojektowanym i zbudowanym przez polskich specjalistów ARUZ-em, czyli "cyfrową probówką" posiadającą moc obliczeniową większą od superkomputerów. Działają w nim także Laboratoria: Biotechnologiczne, Medycyny Spersonalizowanej, Autentykacji Produktów oraz Symulacji Molekularnych. (PAP)
Zobacz także
Konkurs "Budujemy Kujawsko-Pomorskie w Minecraft"
2016-05-21, 11:34Poznawanie ciekawych miejsc regionu za pomocą gry komputerowej? To możliwe! Wystarczy zagrać w Minecraft i w wirtualnym świecie zbudować budynek lub obiekt, będący atrakcją turystyczną woj. kujawsko-pomorskiego. Czytaj dalej »
Raport: do 2050 r. przez odporność na antybiotyki może umrzeć 10 mln osób
2016-05-19, 13:5210 mln ludzi rocznie, czyli jedna osoba na trzy sekundy, może umrzeć do 2050 r. z powodu odporności na antybiotyki - wynika z ogłoszonego w czwartek raportu brytyjskiego ekonomisty Jima O'Neilla, który apeluje o zmianę podejścia do… Czytaj dalej »
Nowatorski zabieg w Olsztynie - wszczepienie stymulatorów pacjentom w śpiączce
2016-05-17, 11:01Eksperymentalny zabieg wszczepienia stymulatorów przynosi poprawę stanu pacjentów w śpiączce w około 60 proc. przypadków. Dotychczas przeprowadzano je tylko w Japonii. Pierwsze takie operacje w Polsce przeprowadzone mają zostać we… Czytaj dalej »
NCBR zainwestuje prawie 300 mln zł w prototypy polskich wynalazków
2016-05-13, 09:27Narodowe Centrum Badań i Rozwoju rozstrzygnęło konkurs „Demonstrator”. Ze 137 zgłoszonych projektów wybrano 30, które otrzymają ponad 290 mln zł. 'Te pieniądze nie mają służyć tylko rozwojowi badań dla samych badań, one… Czytaj dalej »
Naukowcy pracują nad zastosowaniem grafenu w medycynie
2016-05-10, 17:28Naukowcy z Uniwersytetu Medycznego we Wrocławiu oraz Polskiej Akademii Nauk prowadzą badania nad zastosowaniem powłoki grafenowej w stentach naczyniowych. To rozwiązanie może spowodować, że urządzenia medyczne będą lepiej tolerowane… Czytaj dalej »